Relation between degree of polarization and Pauli color coded image to characterize scattering mechanisms

نویسندگان

  • Sanjit Maitra
  • Michael G. Gartley
  • John P. Kerekes
  • Chester F. Carlson
چکیده

Polarimetric image classification is sensitive to object orientation and scattering properties. This paper is a preliminary step to bridge the gap between visible wavelength polarimetric imaging and polarimetric SAR (POLSAR) imaging scattering mechanisms. In visible wavelength polarimetric imaging, the degree of linear polarization (DOLP) is widely used to represent the polarized component of the wave scattered from the objects in the scene. For Polarimetric SAR image representation, the Pauli color coding is used, which is based on linear combinations of scattering matrix elements. This paper presents a relation between DOLP and the Pauli decomposition components from the color coded Pauli reconstructed image based on laboratory measurements and first principle physics based image simulations. The objects in the scene are selected in such a way that it captures the three major scattering mechanisms such as the single or odd bounce, double or even bounce and volume scattering. The comparison is done between visible passive polarimetric imaging, active visible polarimetric imaging and active radio frequency POLSAR. The DOLP images are compared with the Pauli Color coded image with |HH-VV|, |HV|, |HH +VV| as the RGB channels. From the images, it is seen that the regions with high DOLP values showed high values of the HH component. This means the Pauli color coded image showed comparatively higher value of HH component for higher DOLP compared to other polarimetric components implying double bounce reflection. The comparison of the scattering mechanisms will help to create a synergy between POLSAR and visible wavelength polarimetric imaging and the idea can be further extended for image fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave Imaging Using SAR

Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...

متن کامل

Monte Carlo simulations of dusty spiral galaxies: extinction and polarization properties

Received ; accepted – 2 – ABSTRACT We present Monte Carlo simulations of dusty spiral galaxies, modelled as bulge + disk systems, aimed to study their extinction and polarization properties. The extinction parameters (absorption and scattering) of dust grains are calculated from Mie's theory for a full distribution of sizes and materials; the radiation transfer is carried on for the four Stokes...

متن کامل

Polarimetric Analysis of Synthetic Aperture Radar Image Using Polsarpro Data Processing and Education Tool

Synthetic Aperture Radar (SAR) gives more resolution than conventional radars. SAR detects and produces the image of the object where conventional radar only detects the object. This paper analyzes the scattering mechanism at tree level of L–band SAR image by using POLSARPRO data processing and education tool. The main view of this paper is creating Pauli color composition of the forest image b...

متن کامل

Automatic white balance: whitebalPR using the dichromatic reflection model

The current color constancy methods are based on an image processing of the sensor ́s RGB data to estimate the color of illumination. Unlike previous methods, whitebalPR measures the illuminant by separating diffuse and specular components in a scene by taking advantage of the polarizing effect occurring to light reflection. Polarization difference imaging (PDI) detects the polarization degree o...

متن کامل

Polarized temporal impulse response for scattering media from third-order frequency correlations of speckle intensity patterns.

Second- and third-order frequency correlations of speckle intensity patterns are used to characterize scattering media for multiple polarization states. The polarized temporal responses thus obtained are sensitive to the degree of scatter, with results being predictable by a diffusion model with sufficiently strong scatter. Experimental data are used to reconstruct various transfer functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012